(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
div2(S(S(x))) → +(S(0), div2(x))
div2(S(0)) → 0
div2(0) → 0
The (relative) TRS S consists of the following rules:
+(x, S(0)) → S(x)
+(S(0), y) → S(y)
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
div2(S(S(x))) →+ +(S(0), div2(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / S(S(x))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
div2(S(S(x))) → +'(S(0'), div2(x))
div2(S(0')) → 0'
div2(0') → 0'
The (relative) TRS S consists of the following rules:
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
div2(S(S(x))) → +'(S(0'), div2(x))
div2(S(0')) → 0'
div2(0') → 0'
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)
Types:
div2 :: S:0' → S:0'
S :: S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
div2
(8) Obligation:
Innermost TRS:
Rules:
div2(
S(
S(
x))) →
+'(
S(
0'),
div2(
x))
div2(
S(
0')) →
0'div2(
0') →
0'+'(
x,
S(
0')) →
S(
x)
+'(
S(
0'),
y) →
S(
y)
Types:
div2 :: S:0' → S:0'
S :: S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
div2
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
div2(
gen_S:0'2_0(
+(
1,
*(
2,
n4_0)))) →
gen_S:0'2_0(
n4_0), rt ∈ Ω(1 + n4
0)
Induction Base:
div2(gen_S:0'2_0(+(1, *(2, 0)))) →RΩ(1)
0'
Induction Step:
div2(gen_S:0'2_0(+(1, *(2, +(n4_0, 1))))) →RΩ(1)
+'(S(0'), div2(gen_S:0'2_0(+(1, *(2, n4_0))))) →IH
+'(S(0'), gen_S:0'2_0(c5_0)) →RΩ(0)
S(gen_S:0'2_0(n4_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
div2(
S(
S(
x))) →
+'(
S(
0'),
div2(
x))
div2(
S(
0')) →
0'div2(
0') →
0'+'(
x,
S(
0')) →
S(
x)
+'(
S(
0'),
y) →
S(
y)
Types:
div2 :: S:0' → S:0'
S :: S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
div2(gen_S:0'2_0(+(1, *(2, n4_0)))) → gen_S:0'2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
div2(gen_S:0'2_0(+(1, *(2, n4_0)))) → gen_S:0'2_0(n4_0), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
div2(
S(
S(
x))) →
+'(
S(
0'),
div2(
x))
div2(
S(
0')) →
0'div2(
0') →
0'+'(
x,
S(
0')) →
S(
x)
+'(
S(
0'),
y) →
S(
y)
Types:
div2 :: S:0' → S:0'
S :: S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
div2(gen_S:0'2_0(+(1, *(2, n4_0)))) → gen_S:0'2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
div2(gen_S:0'2_0(+(1, *(2, n4_0)))) → gen_S:0'2_0(n4_0), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)